翻訳と辞書
Words near each other
・ Palette and Chisel Academy of Fine Art
・ Palette AOC
・ Palette knife
・ Palette of 12 Secret Colors
・ Palette Records
・ Palette swap
・ Palette window
・ Paletten
・ Paletwa
・ Paleu
・ Palewyami language
・ Palexpo
・ Paley
・ Paley & Francis
・ Paley Center for Media
Paley construction
・ Paley graph
・ Paley Park
・ Paley Street
・ Paley, Seine-et-Marne
・ Paley–Wiener integral
・ Paley–Wiener theorem
・ Paley–Zygmund inequality
・ Palezone shiner
・ Paleśnica
・ Palešnik
・ Palež
・ Palež (Srebrenica)
・ Palež (Višegrad)
・ Paležnica


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Paley construction : ウィキペディア英語版
Paley construction
In mathematics, the Paley construction is a method for constructing Hadamard matrices using finite fields. The construction was described in 1933 by the English mathematician Raymond Paley.
The Paley construction uses quadratic residues in a finite field ''GF''(''q'') where ''q'' is a power of an odd prime number. There are two versions of the construction depending on whether ''q'' is congruent to 1 or 3 (mod 4).
==Quadratic character and Jacobsthal matrix==

The quadratic character χ(''a'') indicates whether the given finite field element ''a'' is a perfect square. Specifically, χ(0) = 0, χ(''a'') = 1 if ''a'' = ''b''2 for some non-zero finite field element ''b'', and χ(''a'') = −1 if ''a'' is not the square of any finite field element. For example, in ''GF''(7) the non-zero squares are 1 = 12 = 62, 4 = 22 = 52, and 2 = 32 = 42. Hence χ(0) = 0, χ(1) = χ(2) = χ(4) = 1, and χ(3) = χ(5) = χ(6) = −1.
The Jacobsthal matrix ''Q'' for ''GF''(''q'') is the ''q''×''q'' matrix with rows and columns indexed by finite field elements such that the entry in row ''a'' and column ''b'' is χ(''a'' − ''b''). For example, in ''GF''(7), if the rows and columns of the Jacobsthal matrix are indexed by the field elements 0, 1, 2, 3, 4, 5, 6, then
:
Q = \begin
0 & -1 & -1 & 1 & -1 & 1 & 1\\
1 & 0 & -1 & -1 & 1 & -1 & 1\\
1 & 1 & 0 & -1 & -1 & 1 & -1\\
-1 & 1 & 1 & 0 & -1 & -1 & 1\\
1 & -1 & 1 & 1 & 0 & -1 & -1\\
-1 & 1 & -1 & 1 & 1 & 0 & -1\\
-1 & -1 & 1 & -1 & 1 & 1 & 0\end.

The Jacobsthal matrix has the properties ''QQ''T = ''qI'' − ''J'' and ''QJ'' = ''JQ'' = 0 where ''I'' is the ''q''×''q'' identity matrix and ''J'' is the ''q''×''q'' all-1 matrix. If ''q'' is congruent to 1 (mod 4) then −1 is a square in ''GF''(''q'')
which implies that ''Q'' is a symmetric matrix. If ''q'' is congruent to 3 (mod 4) then −1 is not a square, and ''Q'' is a
skew-symmetric matrix. When ''q'' is a prime number, ''Q'' is a circulant matrix. That is, each row is obtained from the row above by cyclic permutation.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Paley construction」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.